\( \def\vepsi{\varepsilon} \def\bold#1{{\bf #1}} \) \( \def\Hcal{{\mathcal{H}}} \def\bold#1{{\bf #1}} \) \( \def\RR{{\bf R}} \def\bold#1{{\bf #1}} \) \( \def\LL{{\bf L}} \def\bold#1{{\bf #1}} \) \( \def\xv{{\bf x}} \def\bold#1{{\bf #1}} \) \( \def\uv{{\bf u}} \def\bold#1{{\bf #1}} \) \( \def\qv{{\bf q}} \def\bold#1{{\bf #1}} \) \( \def\vv{{\bf v}} \def\bold#1{{\bf #1}} \) \( \def\Xv{{\bf X}} \def\bold#1{{\bf #1}} \) \( \def\cv{{\bf c}} \def\bold#1{{\bf #1}} \) \( \def\gv{{\bf g}} \def\bold#1{{\bf #1}} \) \( \def\wv{{\bf w}} \def\bold#1{{\bf #1}} \) \( \def\Omegamat{{\bf \Omega}} \def\bold#1{{\bf #1}} \) \( \def\Smat{{\bf S}} \def\bold#1{{\bf #1}} \) \( \def\Pmat{{\bf P}} \def\bold#1{{\bf #1}} \) \( \def\Hmat{{\bf H}} \def\bold#1{{\bf #1}} \) \( \def\Imat{{\bf I}} \def\bold#1{{\bf #1}} \) \( \def\Gmat{{\bf G}} \def\bold#1{{\bf #1}} \) \( \def\Gammamat{{\bf \Gamma}} \def\bold#1{{\bf #1}} \) \( \def\Qmat{{\bf Q}} \def\bold#1{{\bf #1}} \) \( \def\Rmat{{\bf R}} \def\bold#1{{\bf #1}} \) \( \def\omegas{{\bf \omega^{\star}}} \def\bold#1{{\bf #1}} \) \( \def\hf{{\frac{1}{2}}} \) \( \def\nablau{\nabla_{\uv}^{2}} \def\bold#1{{\bf #1}} \) \( \def\nablav{\nabla_{\vv}^{2}} \def\bold#1{{\bf #1}} \) \( \def\nablaw{\nabla_{\wv}^{2}} \def\bold#1{{\bf #1}} \) \( \def\nablavv{\nabla_{\vv\vv}^{2}} \def\bold#1{{\bf #1}} \) \( \def\xbar{\overset{-}{\xv}} \def\bold#1{{\bf #1}} \) \( \def\ubar{\overset{-}{\uv}} \def\bold#1{{\bf #1}} \) \( \def\vbar{\overset{-}{\vv}} \def\bold#1{{\bf #1}} \)
Multiple Gradient Descent Algorithm for Multi Objective Differentiable Optimization.
This tool permits to compute a descent direction common to an arbitrary set of cost functions whose gradients are provided in situations other than Pareto stationarity.
This chapter refers to the research report Inria "Quasi-Riemannian Multiple Gradient Descent Algorithm for constrained multiobjective differential optimization" for solving constrained problems by using the basic MGDA tool.
This tool permits to solve a multi-objective optimization problem in which the cost functions are given in two sets:
This page provides references to SMGDA, an extension of MGDA applicable to certain stochastic formulations.
The Platform is freely open to the academic community. The potential user is required to send a request by email to mgda-contact@inria.fr. Please provide brief but accurate answers to the following questions:
The computational core of this platform was originally developed by Jean-Antoine Desideri, implementing the algorithms described in the references cited in the synopsis. The web interface and remote execution system were designed and realized by the SED team of Inria Sophia Antipolis.